spcl.inf.ethz.ch

ETH:ziurich e LT ORI i S g W @spcl_eth

TORSTEN HOEFLER

Interconnects and Architectural Impacts
(on performance, of course J)

o Argonne Trarnlng Program on Extreme Scale Computrng (ATPESC 2014)
August 4™ 2014, St. Charles, IL, USA

spcl.inf.ethz.ch

ETH:zurich (Y 7 N7 ¥ @spcl_eth

Model-based Performance Engineering

A My dream: provably optimal performance (time and energy)
A From problem to machine code

iy
~ i

A Will demonstrate techniques & insights
A And obstacles J

spcl.inf.ethz.ch

ETH:zurich (Y 7 N7 ¥ @spcl_eth

State of the Art Performance Modeling -

|

7 %

Communication- Cache-optimized
reducing algorithms algorithms

Y ¥
‘ Model-driven

Algorithm Design

spcl.inf.ethz.ch

ETH:zurich i & Sk _ -y @spcl_eth

Example: Message Passing, Log(G)P

A new parallel machine model reflects the critical technology

trends underlying parallel computers

4 PracTICAL MODEL of
PAarRALLEL COMPUTATION

PRAM consists of a col-
UR GOAL IS TO DEVELOP A MODEL OF PARALLEL COMPUTATION THAT WILL David E. Culler, Richard M.

§ § lection of processors
serve as a basis for the design and analysis of fast, portable par- David Patterson, Abhijit Sahay,

which compute syn-

Karp,

allel algorithms, such as algorithms that can be implemented Eunice E. Santos, Klaus Erik
- . . § S i chronously in parallel
effectively on a wide variety of current and future parallel J) i Schauser, Ramesh Subramonian,
N . - . and communicate wit

machines. If we look at the body of parallel algorithms devel- and Thorsten von Eicken

a global random access

oped under current parallel models, many are impractical

because they exploit artificial factors not present in any rea-

Process P-1 CACM 1996

PO: MPI_Recv(l); MPI_Recv (1) Broadcast
Pl: MPI_Send(0); MPI_Send(0) Problem

Process 1 Optimal

Solution [1]

Process 0

[1:Karpet al .: AOpti mal broadaBmétdaha, s8mmAatl1o®a3in the

. . Gy spcl.inf.ethz.ch
ETHzurich ' 3 -

3y @spcl_eth

Hardware Reality

¥

- l.()(li

Interlagos, 8/16 cores, source: AMD POWER 7, 8 cores, source: IBM Xeon Phi, 64 cores, source: Intel

spcl.inf.ethz.ch

ETH:zurich i Al A\ 9 @spcl_eth

Hardware Reality

Kepler GPU, source: NVIDIA InfiniBand, sources: Intel, Mellanox gG/Q, Cray Aries, sources: IBM, Cray

spcl.inf.ethz.ch

ETH:zurich i e A\ 9 @spcl_eth

Hardware Reality

Interlagos, 8/16 cores, source: AMD POWER 7, 8 cores, source: IBM Xeon Phi, 64 cores, source: Intel

SE M o

Kepler GPU, source: NVIDIA InfiniBand, sources: Intel, Mellanox gG/Q, Cray Aries, sources: IBM, Cray

- o G s \ spcl.inf.ethz.ch
ETHiirich S 3 TN Yamen

2

Caching Strategies (repeat)

A Remember:
A Write Back?

Ve

A Write Through?

A Cache coherence requirements
A memory system is coherent if it guarantees the following:
A Write propagation (updates are eventually visible to all readers)
A Write serialization (writes to the same location must be observed in order)

Everything else: memory model issues (not in this talk, very complex)

ETH:zurich

spcl.inf.ethz.ch

"y @spcl_eth

Write Through Cache

Memory

Requires write propagation!

(initially X=0 in memory)

1. CPYreads X from memory
A loads X=0 into its cache
2. CPUreads X from memory
A loads X=0 into its cache
3. CPYwrites X=1
A dores X=1 in its cache
A sores X=1 in memory
4 CPUreads X from its cache
A loads X=0 from its cache
Incoherent value for X on CPU

CPUmay wait for update!

spcl.inf.ethz.ch

ETHziirich f e Ak Y Y Nx o @spel_eth

(initially X=0 in memory)

1. CPWyreads X from memory
A loads X=0 into its cache
2. CPUreads X from memory
A loads X=0 into its cache
3. CPYwrites X=1
A dores X=1 in its cache

Write Back Cache
. CPYwrites X =2

| | A sores X=2 in its cache

. CPUYwrites back cache line
Memory A stores X=2 iin memory
. CPYwrites back cache line

A sores X=1 in memory

Later store X=2 from CRldst

Requires write serialization!

. . L spcl.inf.ethz.ch
ETHziirich N TN Yamen

2

A simple example

A Assume C99: struct twoint {
int a;
int b;

}

A Two threads:
A a=b=0 and struct twoint aligned at a 64-Bytes cacheline boundary
A Thread 0: write a=1
A Thread 1: write b=1

A Assume non-coherent write back cache
A What may end up in main memory?

. v camyes SEGIEB Y h e TR spcl.inf.ethz.ch
ETH:ziurich S0 e X 5 [,Qi%l y @spcl_eth

Cache Coherence Protocol

A Programmer cannot deal with unpredictable behavior!

A Cache controller maintains data integrity
A All writes to different locations are visible

Fundamental Mechanisms

A Snooping
A Shared bus or (broadcast) network
ACache controller fisnoopso all trans:

Ve

AMonitors and changes the state of t1

A Directory-based
A Record information necessary to maintain coherence
A E.g., owner and state of a line etc.

T oy, PG - spcl.inf.ethz.ch
ETH:zurich D e X S /&&J W @spcl_eth

An Engineering Approach: Empirical start

A Problem 1: stale reads
A Cache 1 holds value that was already modified in cache 2
A Solution:
Disallow this state
Invalidate all remote copies before allowing a write to complete

A Problem 2: lost update

A Incorrect write back of modified line writes main memory in different order
from the order of the write operations or overwrites neighboring data

A Solution:
Disallow more than one modified copy

spcl.inf.ethz.ch

ETH:zurich RN N . -y @spcl_eth

Cache Coherence Approaches -

A Based on invalidation

A Broadcast all coherency traffic (writes to shared lines)
to all caches

A Each cache snoops
Invalidate lines written by other CPUs
Signal sharing for cache lines in local cache to other caches

A Simple implementation for bus-based systems B
A Works at small scale, challenging at large-scale % % - % %
E.g., Intel Sandy Bridge H[B (B s [[]}
L L [cooRS |«—> [] [] ees [] [™ |
A Based on explicit updates <
A Central directory for cache line ownership S b e 7 (i

A Local write updates copies in remote caches

Can update all CPUs at once

Multiple writes cause multiple updates (more traffic)
A Scalable but more complex/expensive

E.g., Intel Xeon Phi

